
Infinite Latent Process Decomposition

Tomonari Masada
Department of Computer and Information Sciences

Nagasaki University
1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki, Japan

masada@cis.nagasaki-u.ac.jp

October 7, 2010

Abstract

This paper proposes a new Bayesian probabilistic model targeting microarray data. We extend latent
process decomposition (LPD) [3] so that we can assume that there are infinite latent processes. We call
the proposed model infinite latent process decomposition (iLPD). Further, we provide a collapsed variational
Bayesian (CVB) inference for iLPD. Our CVB improves the CVB proposed for LPD in [8] with respect to the
following two aspects. First, our CVB realizes a more efficient inference by treating full posterior distributions
over the hyperparameters of Dirichlet variables based on the discussions in [6]. Second, we correct the weakness
of CVB in [8], which makes the evaluation of the variational lower bound of the log evidence dependent on
the ordering of genes. This dependency is removed by applying the second order approximation proposed in
[6]. These two spects are independent of the assumption of infinite latent processes. Therefore, our CVB can
also be applied to the original LPD. The experiment comparing iLPD with LPD by using the proposed CVB
and also with LDA by using the CVB in [8] is under progress. This paper mainly includes the details of the
model construction of iLPD.

1 Introduction

This paper proposes an extension of latent process decomposition (LPD) [3]. In this new version of LPD, we
can assume that there are infinite latent processes. We denote the model as iLPD, which is an abbreviation
of infinite latent process decomposition. Further, we provide a set of update formulas of collapsed variational
Bayesian (CVB) inference for iLPD. This paper includes the full details of iLPD and its CVB inference.

The rest of the paper is organized as follows. Section 2 provides the previous works related to LPD and also
to the assumtion of infinite topics in the field of text mining. In Section 3, iLPD is described in its full details.
Section 4 provides all update formulas required for implementing CVB for iLPD. Section 5 shows how to obtain
the lower bound of the log evidence, which is required when we evaluate the efficiency of iLPD and compare iLPD
with LPD. Section 6 concludes the paper with planned future work.

2 Previous Works

By regarding samples as documents, genes as words, and latent processes as latent topics, we can grasp LPD
[3] as a “bioinformatics variant” of latent Dirichlet allocation (LDA) [1]. Therefore, we can say that our iLPD
extends LPD just as hierarchical Dirichlet process (HDP) [5] extends LDA by assuming that there are infinite
latent processes. Further, the CVB for LDA originally proposed in [7] is greatly improved by the CVB proposed
in [6], because we can treat full posterior distributions over the hyperparameters of Dirichlet variables based on
the discussions in [6]. The improved CVB can be applied to both LDA and HDP. In a similar manner, we provide
an improved CVB applicable to both LPD and iLPD. Our CVB inference is more efficient than the CVB for LPD
proposed in [8] with respect to the following two aspects:

1. We introduce auxiliary variables by following the approach proposed in [6]. This approach treats full
posterior distributions over the hyperparameters of Dirichlet variables and is independent of the assumption
of infinite latent processes. Therefore, our CVB is also applicable to LPD after a small modification.
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2. We use a more natural approximation technique in computing the variational lower bound of the log evidence
than [8]. The approximation proposed in [8] is not technically natural, because the lower bound computation
depends on the ordering of genes. Therefore, we use the second order approximation technique proposed in
[6] and remove the dependence on the ordering of genes.

LPD has a completely different model construction with respect to the gene expression data when compared
with the model construction of LDA related to the word frequencies. The expression data are continuous data
and are modeled by Gaussian distributions, though the word frequencies are discrete data and are modeled by
multinomial distributions in LDA and HDP. Therefore, while our proposal is heavily based on the discussions in
[6], it is not a trivial task to obtain iLPD from LPD and further to obtain a CVB for iLPD from CVB for LPD.

3 Infinite Latent Process Decomposition (iLPD)

3.1 Generative description of iLPD

In this paper, we identify various types of entities appearing in our probabilistic model with their indices as below:

• {1, . . . , D}: the set of samples,

• {1, . . . , G}: the set of genes, and

• {1, . . . ,K}: the set of latent processes.

We give a generative description of iLPD below. Note that, by regarding samples as documents, genes as words,
and latent processes as latent topics, we can grasp iLPD as a “bioinformatics variant” of HDP [5]. Therefore, the
description below can be understand in parallel with the description of HDP.

• For each sample d, the parameter θd = (θd1, . . . , θdK) of the multinomial distribution Multi(θd), defined
over latent processes {1, . . . ,K}, is drawn from the Dirichlet process DP(α, π).

– We use the stick-breaking construction [4] for the center measure π of DP(α, π). We denote the param-
eter of the single parameter Beta distribution Beta(1, γ) appearing in the stick-breaking construction
as γ, which is in turn drawn from the Gamma distribution Gamma(aγ , bγ).

– The concentration parameter α of DP(α, π) is drawn from the Gamma distribution Gamma(aα, bα).

• For each pair of gene g and latent process k, a mean parameter µgk and a precision parameter λgk of the
Gaussian distribution Gauss(µgk, λgk) are drawm from the Gaussian prior distribution Gauss(µ0, ρ) and the
Gamma prior distribution Gamma(a0, b0), respectively.

– We assume that the precision parameter ρ of the Gamma prior Gauss(µ0, ρ) is in turn drawn from the
Gamma distribution Gamma(aρ, bρ).

• For each pair of sample d and gene g, a latent process is drawn from the multinomial distribution Multi(θd).
Let zdg be the latent variable whose value is this drawn process.

• Based on the process zdg drawn from Multi(θd) for the pair of sample d and gene g, a real number is drawn
from the Gaussian distribution Gauss(µgzdg , λgzdg ). Let xdg be the observed variable whose value is this
drawn real number. xdg corresponds to the expression level in the microarray data.

By using the two Gamma distributions Gamma(aα, bα) and Gamma(aγ , bγ), we can treat full posterior distribu-
tions over the hyperparameters α and γ of the Dirichlet process DP(α, π). This is a remarkable achievement given
in [6]. Therefore, we apply this technique to our CVB inference. This technique can also be applied to the latent
topic Dirichlet prior of LDA and to the latent process Dirichlet prior of LPD. The details of this application
can be deduced from the discussions on the word Dirichlet prior Dirichlet(β, τ) in [6], because the number
of different words is assumed to be finite in [6] just like the number of latent topics (resp. latent processes) is
assumed to be finite in LDA (resp. LPD).
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3.2 Joint distribution

Based on the generative description in Section 3.1, we can give the full joint distribution of iLPD as follows:

p(x, z, θ, µ, λ, ρ, α, π, γ|µ0, a0, b0, aρ, bρ, aα, bα, aγ , bγ)

=
∏
d

p(θd|α, π) · p(α|aα, bα) · p(π̃|γ) · p(γ|aγ , bγ) ·
∏
g,k

p(µgk|µ0, ρ) · p(ρ|aρ, bρ) ·
∏
g,k

p(λgk|a0, b0)

·
∏
d

∏
g

p(zdg|θd)p(xdg|µgzdg , λgzdg )

=
∏
d

Γ(α)∏
k Γ(απk)

∏
k

θαπk−1
dk · abαα

Γ(aα)
αaα−1e−bαα ·

K∏
k=1

Γ(1 + γ)

Γ(1)Γ(γ)
π̃1−1
k (1− π̃k)

γ−1 · a
bγ
γ

Γ(aγ)
γaγ−1e−bγγ

·
∏
g

∏
k

√
ρ

2π
exp

{
− ρ

2
(µgk − µ0)

2

}
· a

bρ
ρ

Γ(aρ)
ρaρ−1e−bρρ ·

∏
g

∏
k

ba0
0

Γ(a0)
λa0−1
gk e−b0λgk

·
∏
d

nd!∏
k ndk!

∏
k

θndk

dk ·
∏
d

∏
g

∏
k

[√
λgk

2π
exp

{
− λgk

2
(xdg − µgk)

2

}]ndgk

, (1)

where ndgk is equal to one when gene g in sample d is assigned to latent process k and is equal to zero otherwise.
Further, we define ndk ≡

∑
g ndgk.

In Eq. (1), p(π̃|γ) denotes the density function of the the single parameter Beta distribution Beta(1, γ)
appearing in the stick breaking construction for π. Between the values π̃k drawn from Beta(1, γ) and the
parameters πk of the center measure of the Dirichlet process DP(α, π), the following equation holds:

πk = π̃k

k−1∏
l=1

(1− π̃l) . (2)

3.3 Introducing augxiliary variables

By marginalizing out the latent process multinomial parameters θd for each sample d, we obtain the following:

p(x, z, µ, λ, α, ρ, π, γ|µ0, a0, b0, aρ, bρ, aα, bα, aγ , bγ) =

∫
p(x, z, θ, µ, λ, α, ρ, π, γ|µ0, a0, b0, aρ, bρ, aα, bα, aγ , bγ)dθ

=
∏
d

Γ(α)

Γ(nd + α)

∏
k

Γ(ndk + απk)

Γ(απk)
· abαα
Γ(aα)

αaα−1e−bαα ·
K∏

k=1

Γ(1 + γ)

Γ(1)Γ(γ)
π̃1−1
k (1− π̃k)

γ−1 · a
bγ
γ

Γ(aγ)
γaγ−1e−bγγ

·
∏
g

∏
k

√
ρ

2π
exp

{
− ρ

2
(µgk − µ0)

2

}
· a

bρ
ρ

Γ(aρ)
ρaρ−1e−bρρ ·

∏
g

∏
k

ba0
0

Γ(a0)
λa0−1
gk e−b0λgk

·
∏
d

∏
g

∏
k

[√
λgk

2π
exp

{
− λgk

2
(xdg − µgk)

2

}]ndgk

. (3)

Now we introduce the auxiliary variables η and s to obtain efficient variational updates [6] as follows:

p(z,η, s|α, π) = p(η|α)p(s, z|α, π) =
∏
d

ηα−1
d (1− ηd)

nd−1
∏
k

[
ndk

sdk

]
(απk)

sdk

Γ(nd)
. (4)

Then, the following equation holds by marginalizing out these auxiliary variables:

p(z|α, π) =
∫ ∑

s

p(z,η, s|α, π)dsdη =
∏
d

Γ(α)

Γ(nd + α)

∏
k

Γ(ndk + απk)

Γ(απk)
. (5)
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After introducing the auxiliary variables, the distribution in Eq. (3) can be rewritten as follows:

p(x, z, µ, λ, ρ, α, π, γ|µ0, a0, b0, aρ, bρ, aα, bα, aγ , bγ)

= p(η|α)p(s, z|α, π)p(α|aα, bα)p(τ |aπ)p(π̃|γ)p(γ|aγ , bγ)p(x|z, µ, λ)p(λ|a0, b0)p(µ|µ0, ρ)p(ρ|aρ, bρ)p(α|aα, bα)

=
∏
d

ηα−1
d (1− ηd)

nd−1
∏
k

[
ndk

sdk

]
(απk)

sdk

Γ(nd)
· abαα
Γ(aα)

αaα−1e−bαα ·
K∏

k=1

γ(1− π̃k)
γ−1 · a

bγ
γ

Γ(aγ)
γaγ−1e−bγγ

·
∏
g

∏
k

√
ρ

2π
exp

{
− ρ

2
(µgk − µ0)

2

}
· a

bρ
ρ

Γ(aρ)
ρaρ−1e−bρρ ·

∏
g

∏
k

ba0
0

Γ(a0)
λa0−1
gk e−b0λgk

·
∏
d

∏
g

∏
k

[√
λgk

2π
exp

{
− λgk

2
(xdg − µgk)

2

}]ndgk

. (6)

3.4 A lower bound of the log evidence

The marginalized likelihood p(x) of the observed data x is often called evidence. By following a regular habit of
variational inferences, we introduce a variational posterior distribution q(z,η, s, µ, λ, ρ, α, π) and apply Jensen’s
inequality to obtain a lower bound of the log of the evidence as follows:

log p(x|µ0, a0, b0, aρ, bρ, aα, bα, aγ , bγ)

= log

∫ ∑
z

∑
s

p(x, z,η, s, µ, λ, ρ, α, π, γ|µ0, a0, b0, aρ, bρ, aα, bα, aγ , bγ)dηdµdλdρdαdπdγ

= log

∫ ∑
z

∑
s

q(z,η, s, µ, λ, ρ, α, π, γ)
p(x, z,η, s, µ, λ, ρ, α, π, γ|µ0, a0, b0, aρ, bρ, aα, bα, aγ , bγ)

q(z,η, s, µ, λ, ρ, α, π)
dηdµdλdρdαdπdγ

≥
∫ ∑

z

∑
s

q(z,η, s, µ, λ, ρ, α, π, γ) log
p(x, z,η, s, µ, λ, ρ, α, π, γ|µ0, a0, b0, aρ, bρ, aα, bα, aγ , bγ)

q(z,η, s, µ, λ, ρ, α, π)
dηdµdλdρdαdπdγ

(7)

Let the right hand side, i.e., the lower bound of the log evidence, be referred to by L for the rest of the paper.

3.5 Posterior factorization assumption

We assume that q(z,η, s, µ, λ, ρ, α, π) can be factorized asq(η, s|z)q(z)q(µ)q(λ)q(ρ)q(α)q(π)q(γ). Then, L can be
written as follows:

L

=

∫ ∑
z

∑
s

q(η, s|z)q(z)q(µ)q(λ)q(ρ)q(α)q(π)q(γ)

log
p(η|α)p(s, z|α, τ)p(x|z, µ, λ)p(α|aα, bα)p(π̃|γ)(µ|µ0, ρ)p(λ|a0, b0)p(ρ|aρ, bρ)p(γ|aγ , bγ)

q(η, s|z)q(z)q(α)q(π)q(µ)q(λ)q(ρ)q(γ)
dηdαdπdµdλdρdγ

(8)

By taking a functional derivative of L in Eq. (8) with respect to q(η, s|z), it can be shown that L is maximized
when q(η, s|z) is equal to p(η, s|x, z, α, π, µ, λ). By replacing q(η, s|z) with p(η, s|x, z, α, π, µ, λ) in Eq. (8), we
obtain the following simplified form of L:

L =

∫ ∑
z

q(z)q(µ)q(λ)q(ρ)q(α)q(π)q(γ)

log
p(x, z|α, π, µ, λ)p(α|aα, bα)p(π̃|γ)p(µ|µ0, ρ)p(λ|a0, b0)p(ρ|aρ, bρ)p(γ|aγ , bγ)

q(z)q(µ)q(λ)q(ρ)q(α)q(π)q(γ)
dµdλdρdαdπdγ . (9)

The lower bound in Eq. (9) will be used to derive the update formula for q(z) in Section 4.5.
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In Eq. (9), we set q(η, s|z) to be equal to p(η, s|x, z, α, τ, µ, λ) and maximize L. On the other hand, η and
s are decoupled in Eq. (4). Therefore, we further assume that q(η, s|z) are factorized as q(s|z)q(s|z). Then, by
rewriting L in Eq. (8), we obtain the following result:

L =

∫ ∑
z

q(η|z)q(z)q(α) log p(η|α)dηdα+

∫ ∑
z

∑
s

q(s|z)q(z)q(α)q(π) log p(s|z, α, π)dαdτ

+

∫
q(α) log p(α|aα, bα)dα+

∫
q(π) log p(π̃|γ)dπ +

∫
q(γ) log p(γ|aγ , bγ)dγ log p(x|z, µ, λ)dµdλ

+

∫ ∑
z

q(z)q(µ)q(λ) +

∫
q(µ)q(ρ) log p(µ|µ0, ρ)dµ+

∫
q(λ) log p(λ|a0, b0)dλ+

∫
q(ρ) log p(ρ|aρ, bρ)dρ

−
∫ ∑

z

q(η|z)q(z) log q(η|z)dη −
∑
z

∑
s

q(s|z)q(z) log q(s|z)−
∑
z

q(z) log q(z)

−
∫

q(α) log q(α)dα−
∫

q(π) log q(π)dπ −
∫

q(γ) log q(γ)dγ

−
∫

q(µ) log q(µ)dµ−
∫

q(λ) log q(λ)dλ−
∫

q(ρ) log q(ρ)dρ . (10)

The lower bound in Eq. (10) will be used to derive the update formulas in Section 4.

Finally, we assume that q(z) can be factorized as q(z) =
∏

d

∏
g q(zdg). Note that

∑K
k=1 q(zdg = k) = 1 is

satisfied for every pair of sample d and gene g.

4 Posterior Updates

In this section, by taking the functional derivative of the lower bound L with respect to each factor of the
variational posterior q(z,η, s, µ, λ, ρ, α, π) = q(η|z)q(s|z)q(z)q(µ)q(λ)q(α)q(π), we obtain the function form of
each factor.

4.1 Posteriors inheritable from CVB for HDP

For the variational posteriors q(α), q(π), q(γ), q(ηd|zd), and q(sdk|zdk), we can use the results of CVB for HDP
[6] as is. Therefore, we only show the resulting function forms below.

q(α) ∝ eα(−bα+
∑

d E[log ηd])αaα+E[s··]−1 (11)

q(π̃k) ∝ π̃
E[s·k]
k (1− π̃k)

E[s·>k]+E[γ]−1 (12)

q(γ) ∝ e−γ(bγ−
∑

k E[log(1−π̃k)])γaγ+K−1 (13)

q(ηd) ∝ η
E[α]−1
d (1− ηd)

nd−1 (14)

q(sdk|zdk) ∝
[
ndk

sdk

]
esdkE[logα]esdkE[log πk] , (15)

where we define s·k ≡
∑

d sdk, s·· ≡
∑

d

∑
k sdk, and s·>k ≡

∑
d

∑
l>k sdk. The formulas above include many

expectations E[·] taken with respect to the variational posteriors. Also for these expectations, we can use the
results presented in [6] as is. For completeness, we include the evaluation formulas of these expectations below.

E[log ηd] = Ψ(E[α])−Ψ(nd + E[α]) (16)

E[sdk] ≈ G[α]G[πk]
{
1−

∏
i

q(zid ̸= k)
}

·
{
Ψ(E+[ndk] +G[α]G[πk])−Ψ(G[α]G[πk]) +

1

2
V+[ndk]Ψ

′′(E+[ndk] +G[α]G[πk])
}

(17)

E[logα] = Ψ(aα + E[s··])− log
(
bα −

∑
d

E[log ηd]
)

(18)

E[log πk] = Ψ(E[s·k] + 1) +

k−1∑
l=1

Ψ(E[s·>l] + E[γ])−
k∑

l=1

Ψ(E[s·≥l] + E[γ] + 1) (19)

E[log(1− π̃k)] = Ψ(E[s·>k] + E[γ])−Ψ(E[s·≥k] + E[γ] + 1) , (20)
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where

E+[ndk] =
E[ndk]

1−
∏

g q(zdg ̸= k)
, (21)

V+[ndk] =
V[ndk]

1−
∏

g q(zdg ̸= k)
− E+[ndk]

2
∏
g

q(zdg ̸= k) . (22)

Our CVB inference uses the special mean E+[ndk] and the special variance V+[ndk] for ndk, which are proposed
in [6] for treating the case ndk = 0 exactly. This technique makes our CVB more efficient than the CVB in [8].

4.2 Mean posteriors q(µ)

By taking a functional derivative of L with respect to q(µ), we obtain

δL
δq(µ)

=

∫ ∑
z

q(z)q(λ) log p(x|z, µ, λ)dλ+

∫
q(ρ) log p(µ|µ0, ρ)dρ− log q(µ) + const. (23)

Therefore, q(µ) can be written as follows:

q(µ) ∝ exp
{∫

q(ρ) log p(µ|µ0, ρ)dρ
}
exp

{∫ ∑
z

q(z)q(λ) log p(x|z, µ, λ)dλ
}
. (24)

The integral appearing in the first exponential function can be evaluated as follows:∫
q(ρ) log p(µ|µ0, ρ)dρ = −1

2

∑
g,k

(µgk − µ0)
2

∫
q(ρ)ρdρ+ const. = −E[ρ]

2

∑
g,k

(µgk − µ0)
2 + const. (25)

where we regard every term not related to µ as a constant. The integral inside the second exponential function
in Eq. (24) can be evaluated as follows:∫ ∑

z

q(z)q(λ) log p(x|z, µ, λ)dλ =

∫ ∑
z

q(z)q(λ) log

[∏
g

∏
k

∏
d

[√
λgk

2π
exp

{
− λgk

2
(xdg − µgk)

2

}]ndgk
]
dλgk

=
∑
d,g

K∑
k=1

q(zdg = k)

∫
q(λgk) log

[√
λgk

2π
exp

{
− λgk

2
(xdg − µgk)

2

}]
dλgk

= −
∑
g,k

E[λgk]
∑
d

q(zdg = k)(xdg − µgk)
2

2
+ const. = −

∑
g,k

E[λgk]
E[ngk]µ

2
gk − 2µgkxgk

2
+ const. , (26)

where we regard every term not related to µ as a constant. In Eq. (26), we refer to
∑

d q(zdg = k) by E[ngk], i.e.,
the expected frequency of the assignment of gene g to latent process k. Further, we define xgk ≡

∑
d q(zdg = k)xdg.

By combining Eq. (25) and Eq. (26), we obtain

q(µgk) ∝ exp
{
− E[ρ]

2
(µgk − µ0)

2
}
exp

(
− E[λgk]

E[ngk]µ
2
gk − 2µgkxgk

2

)
∝ exp

{
− 1

2

(
E[ρ]µ2

gk − 2E[ρ]µ0µgk + E[ngk]E[λgk]µ
2
gk − 2E[λgk]xgkµgk

)}
∝ exp

{
− E[ρ] + E[ngk]E[λgk]

2

(
µgk − µ0E[ρ] + xgkE[λgk]

E[ρ] + E[ngk]E[λgk]

)2
}

. (27)

Eq. (27) tells that the mean parameter mgk and the precision parameter rgk of the variational Gaussian posterior
q(µgk) can be written as follows:

mgk =
µ0E[ρ] + xgkE[λgk]

rgk
, rgk = E[ρ] + E[ngk]E[λgk] . (28)
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4.3 Precision posteriors q(λ)

By taking a functional derivative of L with respect to q(λ), we obtain

δL
δq(λ)

=

∫ ∑
z

q(z)q(µ) log p(x|z, µ, λ)dµ+ log p(λ|a0, b0)− q(λ) + const. (29)

Therefore, q(λ) can be written as follows:

q(λ) ∝ p(λ|a0, b0) exp
{∫ ∑

z

q(z)q(µ) log p(x|z, µ, λ)dµ
}
. (30)

The integral inside the exponential function can be evaluated as follows:∫ ∑
z

q(z)q(µ) log p(x|z, µ, λ)dµ =
∑
d,g

K∑
k=1

q(zdg = k)

∫
q(µgk) log

[√
λgk

2π
exp

{
− λgk

2
(xdg − µgk)

2

}]
dµgk

=
∑
g,k

log

√
λgk

2π

∑
d

q(zdg = k)−
∑
g,k

λgk

2

∑
d

q(zdg = k)

∫
q(µgk)(µ

2
gk − 2xdgµgk + x2

dg)dµgk

=
∑
g,k

E[ngk] log

√
λgk

2π
−
∑
g,k

λgk

2

(
E[ngk]E[µ2

gk]− 2xgkE[µgk] + vgk

)
=

∑
g,k

E[ngk] log

√
λgk

2π
−
∑
g,k

λgk

{E[ngk]/rgk +
∑

d q(zdg = k)(xdg −mgk)
2

2

}
(31)

where we define vgk ≡
∑

d q(zdg = k)x2
dg and replace the variance E[µ2

gk] − E[µgk]
2 of µgk with the inversion of

the precision rgk, which is introduced in Eq. (28). Consequently, we can obtain q(λgk) as follows:

q(λgk) ∝ λa0−1
gk e−b0λgk · exp

[
E[ngk] log

√
λgk

2π
− λgk

{E[ngk]/rgk +
∑

d q(zdg = k)(xdg −mgk)
2

2

}]
∝ λ

E[ngk]/2+a0−1
gk exp

[
− λgk

{E[ngk]/rgk +
∑

d q(zdg = k)(xdg −mgk)
2

2
+ b0

}]
. (32)

Eq. (32) tells that the shape parameter agk and the rate parameter bgk of the variational Gamma posterior q(λgk)
can be written as follows:

agk =
E[ngk]

2
+ a0 , bgk =

E[ngk]/rgk +
∑

d q(zdg = k)(xdg −mgk)
2

2
+ b0 . (33)

By using Eq. (33), the expectation E[λgk] appearing in Eq. (28) can be evaluated as agk/bgk.

4.4 Precision hyperparameter posterior q(ρ)

We take a functional derivative of L with respect to q(ρ) as follows:

δL
δq(λ)

=

∫
q(µ) log p(µ|µ0, ρ)dµ+ log p(ρ|aρ, bρ)− log q(ρ) + const. (34)

Then, q(ρ) can be written as

q(ρ) ∝ p(ρ|aρ, bρ) · exp
{∫

q(µ) log p(µ|µ0, ρ)dµ
}
. (35)
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The integral inside the exponential function can be evaluated as follows:∫
q(µ) log p(µ|µ0, ρ)dµ =

∑
g,k

∫
q(µgk) log

[√
ρ

2π
exp

{
− ρ

2
(µgk − µ0)

2
}]

dµgk

=
GK

2
log

( ρ

2π

)
− ρ

2

∑
g,k

∫
q(µgk)(µgk − µ0)

2dµgk =
GK

2
log

( ρ

2π

)
− ρ

2

∑
g,k

(
E[µ2

gk]− 2µ0E[µgk] + µ2
0

)
=

GK

2
log

( ρ

2π

)
− ρ

2

∑
g,k

{(
E[µ2

gk]− E[µgk]
2
)
+ E[µgk]

2 − 2µ0E[µgk] + µ2
0

}
=

GK

2
log

( ρ

2π

)
− ρ

2

∑
g,k

{ 1

rgk
+
(
E[µgk]− µ0

)2}
(36)

Therefore, q(ρ) is obtained as

q(ρ) ∝ ρaρ−1e−bρρ · exp
[
GK

2
log

( ρ

2π

)
− ρ

2

∑
g,k

{ 1

rgk
+

(
E[µgk]− µ0

)2}]

∝ ρGK/2+aρ−1 · exp
[
− ρ

{
bρ +

∑
g,k

r−1
gk +

(
mgk − µ0

)2
2

}]
. (37)

Eq. (37) tells that the shape parameter a and the rate parameter b of the variational Gamma posterior q(ρ) can
be written as follows:

a = aρ +
GK

2
, b = bρ +

∑
g,k

r−1
gk +

(
mgk − µ0

)2
2

. (38)

4.5 Latent process assignment posteriors q(z)

Recall that q(z) is factorized as
∏

d

∏
g q(zdg). For each q(zdg), we take a functional derivative of L in Eq. (9) as

follows:

δL
δq(z′dg)

=

∫ ∑
z¬dg

q(z¬dg)q(α)q(π)q(µ)q(λ) log p(x, z¬dg, z′dg|α, π, µ, λ)dαdτdµdλ− log q(z′dg) + const. (39)

Therefore, we obtain a function form of q(zdg = k) as follows:

q(zdg = k) ∝ exp
{∫ ∑

z¬dg

q(z¬dg)q(α)q(π)q(µ)q(λ) log p(x, z¬dg, zdg = k|α, π, µ, λ)dαdπdµdλ
}
. (40)

The integral inside the exponential function can be evaluated as below. First, we rewrite p(x, z|α, π, µ, λ) as:

p(x, z|α, π, µ, λ) = p(z|α, π)p(x|z, µ, λ)

=
∏
d

Γ(α)

Γ(nd + α)

∏
k

Γ(ndk + απk)

Γ(απk)
·
∏
d

∏
g

∏
k

[√
λgk

2π
exp

{
− λgk

2
(xdg − µgk)

2

}]ndgk

. (41)

By removing gene g from sample d, we obtain the following distribution:

p(x¬dg, z¬dg|α, π, µ, λ) = p(z¬dg|α, π)p(x¬dg|z¬dg, µ, λ)

=
∏
d

Γ(α)

Γ(n¬dg
d + α)

∏
k

Γ(n¬dg
dk + απk)

Γ(απk)
·
∏
d

∏
g′ ̸=g

∏
k

[√
λg′k

2π
exp

{
− λg′k

2
(xdg′ − µg′k)

2

}]ndg′k

. (42)

We divide p(x, z|α, π, µ, λ) by p(x¬dg, z¬dg|α, π, µ, λ) and obtain the following result:

p(xdg, zdg = k|x¬dg, z¬dg, α, π, µ, λ) =
p(x, z¬dg, zdg = k|α, π, µ, λ)

p(x¬dg, z¬dg|α, π, µ, λ)

=
n¬dg
dk + απk

n¬dg
d + α

·
√

λgk

2π
exp

{
− λgk

2
(xdg − µgk)

2

}
. (43)
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Therefore, the integral inside the exponential function in Eq. (40) can be evaluated as follows:∫ ∑
z¬dg

q(z¬dg)q(α)q(π)q(µ)q(λ) log p(x, z¬dg, zdg = k|α, π, µ, λ)dαdπdµdλ

=

∫ ∑
z¬dg

q(z¬dg)q(α)q(π)q(µ)q(λ) log
{
p(xdg, zdg = k|x¬dg, z¬dg, α, π, µ, λ)p(x¬dg, z¬dg|α, π, µ, λ)

}
dαdπdµdλ

=

∫ ∑
z¬dg

q(z¬dg)q(α)q(π) log
n¬dg
dk + απk

n¬dg
d + α

dαdπ

+

∫
q(µgk)q(λgk) log

[√
λgk

2π
exp

{
− λgk

2
(xdg − µgk)

2

}]
dµgkdλgk + const. (44)

The first term in Eq. (44) can be approximated as is discussed in [6]:∫ ∑
z¬dg

q(z¬dg)q(α)q(π) log
n¬dg
dk + απk

n¬dg
d + α

dαdπ ≈ log(G[απk] + E[n¬dg
dk ])−

V[n¬dg
dk ]

2(G[απk] + E[n¬dg
dk ])2

, (45)

where G[·] means the geometric expectation G[·] ≡ eE[log ·]. The second term in Eq. (44) can be evaluated as
follows:∫

q(µgk)q(λgk) log

[√
λgk

2π
exp

{
− λgk

2
(xdg − µgk)

2

}]
dµgkdλgk

=
1

2
E[log λgk]−

1

2
x2
dgE[λgk] + 2xdgE[λgk]E[µgk]−

1

2
E[λgk]E[µgk]

2 − 1

2
E[λgk](E[µ2

gk]− E[µgk]
2) + const.

=
1

2
E[log λgk]−

agk
bgk

·
(xdg −mgk)

2 + r−1
gk

2
+ const. (46)

Therefore, we have obtained q(zdg = k) as below:

q(zdg = k) ∝≈ (G[απk] + E[n¬dg
dk ]) exp

{
−

V[n¬dg
dk ]

2(G[απk] + E[n¬dg
dk ])2

}

·
√

G[λgk] exp

{
− agk

bgk
·
(xdg −mgk)

2 + r−1
gk

2

}
. (47)

5 Lower Bound

When we implement the inference for Bayesian probabilistic models, we often monitor the progress of the inference
by evaluating the lower bound of the log evidence per several iterations. The lower bound is expected to be
increased as the inference proceeds. Therefore, we can use the lower bound evaluation for checking the correctness
of the implementation. Further, we can also use the lower bound achieved at the final iteration of the inference
to compare e.g. the convergence efficiency of different inference approaches over the same training data.

In this section, we try to rewrite L only by using the parameters and their expectations so as to evaluate L
based on the results given in the preceding sections. First, we rewrite L in Eq. (9) as a sum of various terms
depending on different sets of parameters.

L =

∫ ∑
z

q(z)q(α)q(π) log p(z|α, π)dαdπ +

∫ ∑
z

q(z)q(µ)q(λ) log p(x|z, µ, λ)dµdλ

+

∫
q(α) log p(α|aα, bα)dα+

∫
q(π) log p(π̃|γ)dπ +

∫
q(γ) log p(γ|aγ , bγ)dγ

+

∫
q(µ)q(ρ) log p(µ|µ0, ρ)dµdρ+

∫
q(λ) log p(λ|a0, b0)dλ+

∫
q(ρ) log p(ρ|aρ, bρ)dρ

−
∑
z

q(z) log q(z)−
∫

q(α) log q(α)dα−
∫

q(π) log q(π)dπ −
∫

q(γ) log q(γ)dγ

−
∫

q(µ) log q(µ)dµ−
∫

q(λ) log q(λ)dλ−
∫

q(ρ) log q(ρ)dρ . (48)
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From now on, we explain how to evaluate the terms in the right hand side of Eq.(48) one by one.

1. The first term in Eq. (48) is related to the posterior distribution of latent process assignments. Here we use
the approximation technique proposed in [6] as is and obtain the following result:∫ ∑

z

q(z)q(α)q(π) log p(z|α, π)dαdπ

= D

∫
q(α) log Γ(α)dα−

∑
d

∫
q(α) log Γ(α+ nd)dα

+
∑
d

∑
k

∑
z

q(z)

∫
q(α)q(π) log Γ(απk + ndk)dπdα−D

∑
k

∫
q(α)q(π) log Γ(απk)dπdα

≈ D log Γ(E[α])−
∑
d

log Γ(E[α] + nd)

+
∑
d

∑
k

{
1−

∏
g

q(zdg ̸= k)
}{

log Γ(G[απk] + E+[ndk]) +
V+[ndk]Ψ

′(G[απk] + E+[ndk])

2

}
. (49)

The CVB for LPD [8] adopts an approximation method where we do not need to evaluate the trigamma
function Ψ′(·), which appears in Eq. (49). However, this approximation has a serious drawback. The eval-
uation of this term, i.e.,

∫ ∑
z q(z)q(α)q(π) log p(z|α, π)dαdπ, depends on the ordering of genes {1, . . . , G}.

Therefore, we use an approximation proposed in [6] and remove this dependence on the ordering of genes.
Further, we can treat the case ndk· = 0 exactly. The approximation method used in Eq. (49) is independent
of the assumption of infinite latent processes.

2. We focus on the second term related to the posterior of the observed data and rewrite it as follows:∫ ∑
z

q(z)q(λ)q(µ) log p(x|z, µ, λ)dλdµ

=
∑
d,g

K∑
k=1

q(zdg = k)

∫
q(λgk)q(µgk) log

[√
λgk

2π
exp

{
− λgk

2
(xdg − µgk)

2

}]
dλgkdµgk

=
∑
g,k

E[ngk]
(
E[log λgk]− log 2π

)
2

−
∑
g,k

E[λgk]
{E[ngk]/rgk +

∑
d q(zdg = k)(xdg −mgk)

2

2

}
. (50)

3. The four terms
∫
q(π) log p(π̃|γ)dπ,

∫
q(γ) log p(γ|aγ , bγ)dγ, −

∫
q(π) log q(π)dπ, and −

∫
q(γ) log q(γ)dγ in

the right hand side of Eq. (48) can be combined as
∫
q(γ)q(π) log

p(π,γ|aγ ,bγ)
q(π)q(γ) dπdγ. This is the negative of

the Kullback-Leibler divergence of q(γ)q(π) from p(π, γ|aγ , bγ) and can be evaluated as follows:∫
q(γ)q(π) log

p(π, γ|aγ , bγ)
q(π)q(γ)

dπdγ

= aγ log bγ − log Γ(aγ)− (aγ +K) log
(
bγ −

∑
k

E[log(1− π̃k)]
)
+ log Γ(aγ +K)

−
∑
k

log Γ(E[s·≥k] + E[γ] + 1) +
∑
k

log Γ(E[s·k] + 1) +
∑
k

log Γ(E[s·>k] + E[γ])

−
∑
k

E[s·k]E[log π̃k]−
∑
k

(E[s·>k] + E[γ])E[log(1− π̃k)] , (51)

where E[log π̃k] can be evaluated as Ψ(E[s·k] + 1)−Ψ(E[s·≥k] + E[γ] + 1) based on Eq. (12).

4. By combining the terms related to the concentration parameter α, we obtain the negative of the Kullback-
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Leibler divergence of q(α) from p(α|aα, bα) as follows:∫
q(α)

log p(α|aα, bα)
q(α)

dα

=
{
aα log bα − log Γ(aα) + (aα − 1)Ψ(aα + E[s··])− (aα − 1) log

(
bα −

∑
d

E[log ηd]
)
− bαE[α]

}
−
{
log

(
bα −

∑
d

E[log ηd]
)
− log Γ(aα + E[s··]) + (aα + E[s··]− 1)Ψ(aα + E[s··])− (aα + E[s··])

}
.

= aα log
bα

bα −
∑

d E[log ηd]
+ log

Γ(aα + E[s··])
Γ(aα)

− E[s··]Ψ(aα + E[s··])− E[α]
∑
d

E[log ηd] . (52)

5. We can rewrite the term
∫
q(µ)q(ρ) log p(µ|µ0, ρ)dµ as follows:∫

q(µ)q(ρ) log p(µ|µ0, ρ)dµgkdρ =
∑
g,k

∫
q(ρ) log

√
ρ

2π
dρ−

∑
g,k

∫
q(µgk)q(ρgk)

ρ

2
(µgk − µ0)

2dµgkdρ

=
GK

2

{
E[log ρ]− log(2π)

}
− E[ρ]

2

∑
g,k

{ 1

rgk
+
(
E[µgk]− µ0

)2}
. (53)

6. The terms
∫
q(λ) log p(λ|a0, b0)dλ and

∫
q(ρ) log p(ρ|aρ, bρ)dρ can be evaluated as follows:∫

q(λ) log p(λ|a0, b0)dλ =
∑
g,k

∫
q(λgk) log

ba0
0

Γ(a0)
λa0−1
gk e−b0λgkdλgk

= GKa0 log b0 −GK log Γ(a0) + (a0 − 1)
∑
g,k

E[log λgk]− b0
∑
g,k

E[λgk] , (54)∫
q(ρ) log p(ρ|aρ, bρ)dρ = aρ log bρ − log Γ(aρ) + (aρ − 1)E[log ρ]− bρE[ρ] . (55)

7. The term
∫
q(µ) log q(µ)dµ is evaluated by using the parameters mgk and rgk obtained in Eq. (28) as follows:∫

q(µ) log q(µ)dµ =
∑
g,k

∫
q(µgk) log q(µgk)dµgk =

∑
g,k

∫
q(µgk) log

√
rgk
2π

exp

{
− rgk

2
(µgk −mgk)

2

}
dµgk

=
∑
g,k

log

√
rgk
2π

−
∑
g,k

rgk
2

∫
q(µgk)(µgk −mgk)

2dµgk =
∑
g,k

log rgk
2

− GK log(2π)

2
− GK

2
(56)

8. The terms
∫
q(λ) log q(λ)dλ and

∫
q(ρ) log q(ρ)dρ are evaluated based on Eq. (33) and Eq. (37), respectively:∫

q(λ) log q(λ)dλ =
∑
g,k

agk log bgk −
∑
g,k

log Γ(agk) +
∑
g,k

(agk − 1)E[log λgk]−
∑
g,k

bgkE[λgk]

=
∑
g,k

log bgk −
∑
g,k

log Γ(agk) +
∑
g,k

(agk − 1)Ψ(agk)−
∑
g,k

agk (57)∫
q(ρ) log q(ρ)dρ = log b− log Γ(a) + (a− 1)Ψ(a)− a . (58)

9. Finally, the term
∑

z q(z) log q(z) =
∑

d,g,k q(zdg = k) log q(zdg = k) can be evaluated by using the proba-
bilities obtained in Eq. (47).

6 Conclusion

We have implemented the proposed CVB based on the mathematical descriptions given in this paper. To achieve
the efficiency in computational cost, we have parallelized the inference with OpenMP library, because we have
already confirmed the efficiency of OpenMP parallelization in text mining using LDA-like topic models [2].
Further, the experiment comparing iLPD with LPD is now being conducted on the microarray data available at
http://www.gems-system.org/.
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